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Restrained molecular dynamics simulations were performed to study the binding affinity of the peptide with al-
kanethiols of different tail-groups, S(CH2)7CH3, S(CH2)7OH and S(CH2)7COOH, which self-assembled on Au(111) 
surface in the presence of water molecules. The curves of binding affinity were calculated by fixing the center of 
mass of the peptide at various distances from the assembling surface. Simulation results show that the binding affin-
ity is in the order as COOH-SAMs＞OH-SAMs＞CH3-SAMs, while 100% COOH-SAMs＞5% COOH-SAMs in 
concentration. The effects on binding affinity by different tail-groups were also studied. Results show that the bind-
ing affinity between COOH-SAMs and the peptide is bigger than those of the others and increasing the acidity of 
COOH-SAMs will result in stronger attractive power. 
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Introduction 

Binding efficiency and selectivity of binding orien-
tation are important factors in improving the detection 
of antibodies-antigens or protein microarrays. Self-as- 
sembled monolayers (SAMs) have been proposed as a 
platform for enhancing the detection by special designs 
with blockage of large spaces and randomness of the 
surface morphology. With reference to protein-surface 
interactions, much effort has gone into protein adsorp-
tion experiments and models over the past several dec-
ades1-5 with ultimate aim to quantitatively measure, pre-
dict, and understand the detail of protein-surface inter-
actions. As described by Norde6 and Sigal,7 proteins 
typically adsorb strongly to hydrophobic surfaces and 
weakly to neutral hydrophilic surfaces. Charged sur-
faces are generally found to be more adsorptive for op-
positely charged proteins, and the degree of adsorption 
is typically lower for similarly charged surfaces and 
proteins.6,7 While these trends are easily conceptualized, 
the numerous simulation interactions occurring among 
the functional groups of proteins, material surfaces, and 
surrounding body fluids are very complex in nature and 
the actual submolecular-level mechanisms and struc-
tural rearrangements involved in these reactions are not 
well understood. 

Molecular simulation provides one of the most direct 
methods to theoretically investigate molecular behavior 
in complex systems, such as the adsorption of pro-
tein-surface systems. Because of the size of the molecu-
lar systems involved, the methods such as molecular 
dynamics (MD) and Monte Carol (MC), were required 
for simulation of these types of processes.8 These 
methods employ potential energy (force-field) functions 
that calculate the overall potential energy of a system 
based on the summation of individual atom-atom pair 
interactions. The force field equations take into account 
the contributions from bonding interactions and non-
bonding interactions. These energy contributions are 
determined by a set empirical parameters which were 
used to calculate energy by force field . 

This study demonstrates the binding affinities be-
tween SAMs surfaces and a hormone glucagons pro-
tein.9 The glucagon is a single α-helix basic protein 
which plays a major role in increasing blood glucose 
and maintaining normal concentrations of glucose in 
blood and is often described as having the opposite ef-
fect of insulin.10 

The SAMs surfaces were individually generated 
with 1-heptanethiol derivatives [Au-S(CH2)7-X, X＝

COOH, OH and CH3]. The change in different tail- 
groups will alter the binding affinity between protein 
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molecules and SAMs surfaces . 
The present study performed molecular dynamics 

simulation on model systems of single glucagon protein 
on SAMs surfaces with carboxyl, hydroxyl and methyl 
tail-groups. Detailed analysis of the dynamics simula-
tion reveals the physical mechanism of protein binding. 

Molecular dynamics methods 

Model systems of glucagons and SAM molecules 

Several glucagon structures have been solved and 
deposited with protein data bank (PDB). We used the 
X-ray structure of glucagon (PDB ID: 1GCN) as the 
simulation model because the action and metabolism of 
glucagons11 have been well studied. 

The three kinds of SAM structures are 1-heptane- 
thiol derivatives with different tail-groups (carboxyl, 
hydroxyl and methyl) and terminal thiol group bonding 
to gold atom, [Au-S(CH2)7-X] with X＝COOH, OH and 
CH3. They were built and minimized by CHAMm pro-
gram12 with the additional force field shown in Table 
1.13,14  

Table 1  The additional force filed of Au and sulfur atoms 

            Harmonic bond interaction 

 r0/nm kr/(kJ•mol－1•nm－2) 

Au-S 0.02531 0.082 

S-C 0.01836 0.085 

            Harmonic angle interaction 

 θ0 kθ/(kJ•mol－1) 

Au-S-C 109 193.84 

           Dihedral angle interaction 

 φ0 kφ/(kJ•mol－1) 

Au-S-C-C 180 1.29 

S-C-C-C －19 0.91 

           Lennard-Jones interaction 

 rmin/nm Epsilon/(kJ•mol－1) 

Au 0.20736 0.32 

Computational models and details 

The molecular dynamics simulation was performed 
with NAMD15 and the SAM-protein systems were stud-
ied by the MD software. 

We used CHARMm force field and the additional 
parameters13,14 for SAM-protein systems. The SAM 
surfaces were arranged in 16 by 16 hexagonal array 
with a gold-gold spacing of 0.475 nm16 and 1-heptane- 
thiol derivatives were tilted with 32°.17 The COOH 
SAM surface was constructed with both COOH (proto-
nated) and COO－ (depronated) functional groups. Five 
percents of the COOH groups were depronated and po-
sitioned throughout the SAM surface, as appropriate for 
a surface pKa≈8.718 in a solution with pH＝7.4. And 
100% of COO －  (depronated) functional groups of 

SAM surface were constructed. We moved the central 
of mass of protein on the surfaces of SAMs with 0.05, 
0.1, 0.2 nm and generated TIP3P water boxes of volume 
1.27 nm×0.47 nm×0.52 nm on the top of SAMs sur-
faces. The water molecules around the protein with 0.02 
nm were deleted. The SAM-protein models are shown 
in Figure 1. 

 

Figure 1  (a) The 1-heptanethiol derivatives with COOH, OH, 
CH3 tail-groups are individualy coated on gold surfaces. (b) 
Snapshot of the glucagon-SAM surface in simulation. T1 : total 
height of simulation system (T1＝0.52 nm ). D2: the separation 
distance between glucagon protein and SAM surface (D2＝0.05, 
0.10, 0.15 nm). 

The potential functions consist of bond, angle, dihe-
dral, van der Waals (VDW), and Coulombic interactions. 
The full form of the potential functions is given by  
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where iK , Kθ  and nV  are the force constants for the 
bond, angle and torsion, respectively; while ,0il , ,0iθ  
and γ  are the values of bond length, bending angle 
and torsion angle at equilibrium. The Lennard-Jones 
12-6 potential function was used to calculate VDW in-
teractions, in which ijε  and ijR  are the parameters for 
VWD depth and size, respectively. The last term is 
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Coulombic interactions in which iq  is the partial 
atomic charge. 

The velocity Verlet algorithm was used for the inte-
gration of the equation of motion with time step of 2 fs. 
Initial velocities were assigned with Maxwell-Boltz- 
mann distribution at 310 K and the simulation was per-
formed at 310 K. During the initial simulation states, the 
harmonic constraints were used for SAM surfaces and 
glucagon proteins, and the bond length between hydro-
gen and any atom was fixed by SHAKE10 algorithm. 
Since the contributions of the SAM-protein surface in-
teractions come mainly from non-bonding interactions, 
we computed the electrostatic and van der Waals poten-
tial energy between SAM surfaces and protein mole-
cules .  

During simulation, we monitored the non-bonded 
interactions between SAM surface and protein mole-
cules as a function of time. For SAM surfaces and glu-
cagon proteins, the interaction curves become stable 
after 200 ps. After the simulation time (200 ps), we 
started to collect simulation data and the data collection 
took 400 ps for each simulation.  

The binding energy was computed from non-bond-
ing interactions between the SAM surface and protein 
molecule. The cutoff distance of non-bonding potential 
energy function is 1.2 nm. 

Results and discussion 

The hormone glucagon is a well-studied small all-α 
protein, which shows a characteristic topology (Figure 
2). Figure 3 shows typical snapshots of the SAM sur-
faces composed of different tail-groups, such as car-
boxyl, hydroxyl and methyl tail-groups. Figure 4 and 
Table 2 show the binding affinity of glucagons protein 
to SAM surfaces with different separation distances 
(0.05, 0.1, and 0.2 nm). When the separation of gluca-
gon-SAM surfaces was equal to 0.05 nm, the binding 
affinities of glucagon-SAM surfaces took the order: 
OH-SAMs＞COOH-SAMs＞CH3-SAMs. With the 
separation distance of 0.1 nm , the binding affinities of 
glucagon-SAM surfaces were in the order of: COOH- 
SAMs＞OH-SAMs＞CH3-SAMs. With the separation 
distance of 0.2 nm, the binding affinities of gluca-
gon-SAM surfaces were close to zero. In the case of 
separation distance 0.05 nm, the Coulombic and VWD 
interactions (OH-SAMs-glucagon) were stronger than 
those (5% COOH-SAMs-glucagon). We considered 5%  
protonated carboxyl tail-groups of SAMs provided 
lower concentration of COO－ groups and caused the 
lower Coulombic interaction (SAMs-protein). Besides, 
we simulated the system involving 100% protonated 
COOH-SAM, glucagon protein, and water molecules. 
And the result is shown in Figure 5. From which it can 
be seen that the Coulombic interaction (100% COOH- 
SAMs-glucagon) is approximately 25 times of that (5% 
COOH-SAMs-glucagon). So, our results show that 

 

Figure 2  The structure of glucagon protein in a ribbon drawing.  

 

Figure 3  16×16 1-heptanethiol derivative molecules. (a) SAM 
surface with OH tail-groups. (b) SAM surface with CH3 
tail-groups. (c) SAM surface with 100% depronated COOH SAM 
molecules. (d) SAM surface with 5% depronated COOH SAM 
molecules. 

Table 2  The binding affinities of glucagons-SAMs with differ-
ent separation distance 0.05, 0.1, and 0.2 nm  

Separation distance/nm 
SAMs 

Affinity/ 
(kJ•mol－1) 0.05 0.10 0.20 

Total －534.92 －79.80 0 

Van der walls －198.97 －33.99 0 OH 

Coulombic －335.95 －45.81 0 

Total －117.41 －13.92 0 

Van der walls －114.46 －13.79 0 CH3 

Coulombic －2.95 －0.13 0 

Total －243.56 －124.98 0 

Van der walls －49.32 －25.70 0 COOHa 

Coulombic －194.24 －99.28 0 

Total －4891.60 －3233.27 0 

Van der walls －84.10 －18.85 0 COOHb 

Coulombic －4807.50 －3214.32 0 
a COOH represents 5% depronated COOH SAM molecules.     
b COOH represents 100% depronated COOH SAM molecules. 
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Figure 4  Comparing the binding energy between glucagon 
protein and SAM surfaces ([Au-S(CH2)n-X], X＝COOH, OH and 
CH3) (a) Coulombic＋van der Waals energy profile, (b) van der 
Waals energy profile, (c) Coulombic energy profile. 

 

Figure 5  Comparing the binding energy of 5% and 100% de-
pronated COOH SAM surface. 

when the tail-groups of SAMs are more hydrophilic and 
carry negative electricity, the SAMs will show stronger 
attractive power to protein molecules. 

Conclusion 

In this paper, it was proposed that the use of differ-
ent tail-groups of SAM surfaces may affect the binding 
affinity of protein molecules. The MD simulations of 
surface-protein interactions were carried out. In this 
work, the binding affinities between glucagon protein 
and three kinds of SAM surfaces were simulated. About 
the COOH SAM surfaces, the two kinds of COOH 
SAM surfaces (5% and 100% depronated COOH SAM 
molecules) were constructed. Our results show more 
hydrophilic and negatively electrical SAMs surfaces 
will possess stronger attractive power to proteins. In 
summary, molecular simulation is a valuable tool to 
predict the binding affinity of SAM-protein surfaces.  
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